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Abstract

Action-angle coordinates can be constructed for so-called integrable Hamiltonian dynamical
systems, for which there exists a foliation of phase space by surfaces that are invariant under
the dynamical flow.

Perturbations generally destroy integrability.

However, we know that periodic orbits will survive, as will cantori, as will the “KAM” surfaces
that have sufficiently irrational frequency, depending on the perturbation. There will also be
irregular “chaotic” trajectories.

By “fitting” the coordinates to the invariant structures that are robust to perturbation, action-
angle coordinates may be generalized to non-integrable dynamical systems. These coordinates
“capture” the invariant dynamics and neatly partition the chaotic regions. These so-called
chaotic coordinates are based on a construction of almost-invariant surfaces known as ghost
surfaces. The theoretical definition and numerical construction of ghost surfaces and chaotic
coordinates will be described and illustrated.



Ghost Surfaces: theoretical definition



Classical Mechanics 101:

The action integral is a functional of a curve in phase space.
1. The action, S, is the line integral along an arbitrary “trial” curve {C : ¢ = q(t)}, of the Lagrangian,

L=T(q) - Ulg.t), S= f £q,d,0)dt
S— N — C

kinetic  potential

2. For magnetic fields, B, the action is the line integral, of the vector potential, B =V x A,
SE]A'CZ], along {C:0=0((),p=p(0)}. /A-dlz/B-ds:ﬂuX
C

3. Physical trajectories (magnetic fieldlines) extremize the action:
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extremal curves satisfy p = B?/B¢, and § = B?/B¢.

4. Action-extremizing periodic curves may be minimizing or minimax.
W

9. [Ghost surfaces are defined by an action-gradient flow between the minimax and minimizing periodic orbit.]



1954 : Kolmogorov, Dokl. Akad. Nauk SSSR 98, 469 ,1954
1963 : Arnold, Russ. Math. Surveys 18, 9,1963

1962 : Moser, Nachr. Akad. Wiss. Goett. Il, Math.-Phys. K. 1, 1,1962
1. A dynamical system is integrable if there exists action-angle (v, 0) s.t. H = Hy(1)).

2. Arbitrary perturbation H = Hy(v)) + Z Hp, n(¥) expli(mb — n()], where ¢ =t is “time”.

3. Generating function to new action-action coordinates, (1, 8), is

S(,8) = §- G415 —mn enli(mf — nc)]. (1)

(m6 —n)
i. small denominators: rationals are dense; 3(m,n) s.t. m 6 — n is arbitrarily small.

4. KAM: adjust 1, iteratively, to ensure that ¢ = 6 is sufficiently irrational,

n r
Diophantine condition }é — —‘ > — | for all n & m, where r > 0 and k > 1.
m m

5. If ¢ is sufficiently irrational then for sufficiently small H,, (1), Eqn(1l) converges.

i. action-angle coordinates can be constructed locally if « = 6 is irrational.

“one of the most important concepts is labelling orbits by their frequency” [ J. D. Meiss, Reviews of Modern Physics, 64(3):795 (1992)]



The structure of phase space is related to the

structure of rationals and irrationals.
THE FAREY TREE;

or, according to Wikipedia,

v THE STERN-BROCOT TREE. |
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1. Islands, and chaos, emerge at every rational.

2. Noble irrationals = limit of ultimately alternating paths = limit of Fibonacci ratios



Irrational KAM surfaces break into cantori when
perturbation exceeds critical value.
Both KAM surfaces and cantori restrict transport.
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— KAM surfaces are closed, toroidal surfaces
that stop radial field line transport
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— Cantori have “gaps” that fieldlines can pass through; s
however, cantori can severely restrict radial transport .

— Example: all flux surfaces destroyed by chaos, “noble” = | .23 EPRN Vi
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the fieldlines don’t get past cantori ! - ‘ 7
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— Regions of chaotic fields can provide some
confinement because of the cantori partial barriers. 10° iterations —>




Simple physical picture of cantori
[Percival, 1979]

1. Consider masses, m, linked by springs in a periodic potential.

2. For m = 0, potential is irrelevant: minimum energy state has masses equally spaced.
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3. For large m, springs are irrelvant: all the masses lie at the potential minimum,
and there are “gaps”.
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[Schellnhuber, Urbschat & Block, Physical Review A, 33(4):2856 (1986) ]




The construction of extremizing curves of the action
generalized extremizing surfaces of the quadratic-flux

S a5 0S as .
1. 6S = — — here | — = \/gB” — p\/gB* — =0,/gB¢ — \/gB’ |
4S5 /(;dC (59 50 + dp ﬁp) , where 50 NT, P9 and o 0\/g V9
2. Extremal curves satisfy ?)_g =0, i.e. p= B*/B¢, and Z—S =0, i.e. = BY/BS.
0

3. Introduce toroidal surface, p = P(0, (), and family of angle curves, 0 (¢) = a4+ p¢/q + 0(C), where
« is a fieldline label; p and ¢ are integers that determine periodicity; and 9(0) = é(ZTFC]) =0.

4. On each curve, p,(¢) = P(0,(¢), () and 0,((), can enforce (’;_S = 0; generally v = g—g #= 0.
P

5. The pseudo surface dynamics is defined by 0 = BY/B¢ and p = 0y P 0 + ¢ P.

6. Corresponding pseudo field B, = p B¢ e, + 0 B¢ ey + BCeC; simplifies to B, = B — \Lf e,.
g

1 88\’
7. Introduce the quadratic-flux functional: | o = 5 f / dOd( (86‘)

8. Allowing for 0 P, the first variation is dpo = //d@d( 0P \/g (B989 + BCaC) v .

Euler-Lagrange for QFMs



II(

At each poloidal angle, compute radial “error” field
that must be subtracted from B to create a periodic curve,

and so create a rational, pseudo flux surface.

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline,

1. At every 6 = o, determine v(«) via numerical search so that B — v e,/,/g yields a periodic integral curve;

where « is a fieldline label.

/
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pseudo fieldlines
2. At the true periodic fieldlines, the required additional radial field is zero: i.e. v(ag) =0 and v(ax) = 0.

3. Typically, v(a) ~ Sin(qoz)m VT/X\ T

4. The pseudo fieldlines “capture” the true fieldlines; QFM surfaces pass through the islands.




Ghost surfaces, another class of almost-invariant
surface, are defined by an action-gradient flow
between the action minimax and minimizing fieldline.

oS
1. Action, S|C] = f A - dl, and action gradient, 20 = /9B’ — pBS.
C
aS A C 9 . . b 2] . ) .
2. Enforce — = 0B°—,/gB’ =0, i.e. invert § = BY/B¢ to obtain p = p(0,0,(); so that trial curve

dp
is completely described by #((), and the action reduces from S = S[p({),0(¢)] to S = S[6(C)]

90(¢;T) _  05[0] . N .
= ————— |, where 7 is an arbitrary integration parameter.

ot 00

3. Define action-gradient flow:

4. Ghost-surfaces are constructed as follows:

i. Begin at action-minimax (“O”, “not-always-stable”) periodic fieldline, which is a saddle;
ii. initialize integration in decreasing direction (given by negative eigenvalue/vector of Hessian);

iii. the entire curve “flows” down the action gradient, 0,0 = —dy.S;

. . . . ___.---""f'—'_#_._-___-_-_h\“\--.__
iv. action is decreasing, 0,5 < 0; ,//[/_\
v. finish at action-minimizing (“X”, unstable) periodic fieldline.

vi. ghost surface described by x((, 7), where r is a fieldline label. M




Ghost surfaces are (almost) indistinguishable from
QFM surfaces

can redefine poloidal angle to unify ghost surfaces with QFMs.

1. Ghost-surfaces are defined by
an (action gradient) flow.

2. QFM surfaces are defined by
minimizing / (action gradient)?ds.

3. Not obvious if the different
definitions give the same surfaces.

4. For model chaotic field: \

(a) ghosts = thin solid lines;
(b) QFMs = thick dashed lines;>_)
(c) agreement is excellent;
(d) difference = O(e?),

where € is perturbation. /

5. Can redefine 6 to obtain
unified theory of ghosts & QFMs;

straight pseudo fieldline angle.




Chaotic Coordinates: intuitive description



Simplied Diagram showing the invariant structures:
integrable

| irrational surfacie)

rational surface>

| irrational surface
| rational surface

< angle coordinate >

Action-angle coordinates can be constructed for “integrable” fields

1. the “action” coordinate coincides with the invariant surfaces
2. dynamics then appears simple



Simplied Diagram showing the invariant structures:
perturbed
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After perturbation:

the rational surfaces break into islands, “stable” and “unstable” periodic orbits survive,
some irrational surfaces break into cantori,
some irrational surfaces survive (KAM surfaces), break into cantori as perturbation increases,

— action-angle coordinates can no longer be constructed globally



Simplied Diagram showing the invariant structures:
perturbed




Simplied Diagram showing the invariant structures:
perturbed, but with coordinates adapted to invariant sets

“Chaotic-coordinates” coincide with the invariant sets

1. coordinate surfaces are adapted to fractal hierarchy of remaining invariant sets
2. ghost surfaces = quadratic-flux minimizing surfaces are “almost-invariant”
3. dynamics appears “almost-simple”



Simplied Diagram showing the invariant structures:
example

Poincaré plot of chaotic field Poincaré plot of chaotic field
(in action-angle coordinates of unperturbed field) in chaotic coordinates
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phase-space is partitioned into (1) regular “irrationa
and (2) irregular “rationa

I”

new radial coordinate —



Chaotic Coordinates: construction for stellarator fields



Large Helical Device (LHD) is a stellarator in Japan

1. The magnetic field consistent with an MHD equilibrium, x
Vp%jXB, jEVXB o A
is provided by the HINT-2 code.

2. The field near the edge is chaotic.

3. A selection of ghost surfaces is constructed,
p/q =10/23,10/22,10/21,... near the axis,
p/q =10/9,10/8,10/7,10/6 near the edge.
(shown in lower half of figure)

4. These ghost surfaces, and a suitable interpolation
provide a new coordinate system.

5. The following slides shall concentrate on edge region.




The corresponding islands lie on a coordinate surface

edge
region
of
LHD

—
radial toroidal flux>

cantori

850/443
1230/649
1440/775

3 1310/710
| 1440/809

1230/704

>4 1230/772

1440/919

1440/953
1230/827



The Flux Farey tree shows the flux across the rational
surfaces, the importance of the hierarchy of partial
barriers can be quantified

1. y{ B-dS = / V -Bdv =0 the total flux across any closed surface is zero.
oV V

2. Consider any “ribbon” surface with boundary

coinciding with X and O fieldlines; 107 Wy
define “upward” flux
xpp/q:j{B-ds—/A-dl—fA-dl. o
S O X
3. Surfaces with small flux are “partial” barriers. 10
4. It ®,,/, 18 suff. small, T
collisional transport can dominate.
10710
10712 J !
10 30 20 30 10
7 20 13 19 6

p/q



Now, construct more ghost surfaces

(resolve the fractal structure iteratively)

(10,6)

(30,19)
(20,13)
(30,20)

(10,7)

saoeyuns 1soyb /6
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poincare | /
plot.

Each ordered pair of rationals
defines a noble irrational

constructed
by interpolation F _
S s

flux Surfaces .....................................................................
are straight. [ Z D aw
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Poincaré |.

plot.
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Poincaré
plot.

Islands become
square.
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Poincaré
plot.
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Poincareé

plot.

Edge of
confinement
region is

not a single,
sharp barrier;

but instead
a hierarchy of

i. islands,
ii. KAM, and
iii.  cantori.
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Anisotropic Heat Transport



Consider heat transport:
rapid transport along the magnetic field,
slow transport across the magnetic field.

1.

Imagine that transport along B is unrestricted
e.g. parallel random walk with long steps = collisional mean free path.

Transport across the magnetic field is very small:

e.g. perpendicular random walk with short steps ~ Larmor radius. . \,

particle “knocked”
onto nearby field line

Simplest transport model: anisotropic diffusion,

— =V (IiHV”T + HJLVJ_T) + 5, Kl /K| ~ 10~10, T = temperature; S = source;

Extreme anisotropy presents numerical challenges
— extreme numerical resolution is required.

For computational efficiency, introduce “local fieldline coordinates”.

Construct coordinates (a, 3,() s.t. B = Va x Vg, by local fieldline tracing;

Parallel and perpendicular directions are treated separately, B -V = quag, which reduces numerical diffusion.

o (B®oT
The parallel diffusion operator becomes VﬁT =B — [ =— — ).
¢ \ B2 o¢



Numerical solution of anisotropic heat transport

exploits field-aligned coordinates
1. Heat flux V-q =0, where q =b - VT k| b+ k1 VT, strongly anisotropic.

2. Parallel relaxation employs field-alligned coordinates, B = Va x V3,
L o OPT . o (BT
so parallel derivative is accurate, V”T =B :

on? ¢ \ B ¢
2T 2
3. Perpendicular relaxation simply V27T = g g 32

146 Sparse linear system solved iteratively on numerical grid, resolution = 212 % 212,

— Poincaré plot Error vs grid resolution _
P

—-10
10 = 4-th order differencing gives
s 4-th order convergence

10712 1 I L ! L 1 I |




Isotherms of the steady state solution to the
anisotropic diffusion coincide with ghost surfaces;
analytic, 1-D solution is possible.

1. The temperature is constant on KAM surfaces, cantori,
and ghost-surfaces, i.e. T' = T'(p).

2. From T'=T(p,0,C) to T =T(p) allows

ghost-surface

drl 1
& 9
dp k|2 +k1G

where
09 =/B?2I ds, and
N———

quadratic flux

GE/Vp-Vpds.

>y

"2
metric




Chaotic coordinates simplify temperature profile to a
smoothed Diophantine (fractal) staircase

0 0 t.
1. From 0 = — /V-qdv = —/ q-ndo, assume T = T(s) to derive T" = cons
0s 1% 0s oV I£||Q+H:J_G
BQ
for quadratic-flux 2 = /gSSB—;" do, and metric G = [ ¢g*°do, g°° = Vs - V.

2. In the “ideal limit”, k1 — 0, T"(s) — oo on irrational KAM surfaces (where 2 = 0).

3. Non-zero k ensures T'(s) is smooth; 7”(s) peaks on minimal € surfaces = noble
cantori.

1.0 T T T T 1.0[T T T T

from numerical -

T
const.

Temperature Profile
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s s




Comments

1. The “geometry” of integrable dynamics can be incorporated into the coordinates
action-angle coordinates.

2. The geometry and “fractal-ness” of non-integrable dynamics
can be incorporated into the coordinates

“chaotic coordinates”.

3. In the limit that all the regular dynamics is incorporated,
the coordinates become pathological.

4. In practice, some “smoothing” diffusion-type effects



Unstable manifold



The magnetic axis is a “stable” fixed point (usually),
and the X-point is “unstable”.
Consider the eigenvalues of tangent mapping:

L.

11.

Consider following a fieldline nearby a fixed point, xg+0x, around many toroidal
periods:

VM. ...VM x = (VM)" - 0x = (VM)" - (av, +bVs) =a X, v, + b A} v

"

tangent mapping eigenvectors

. The determinant, [VM| = 1 at fixed points (because V - B = 0),

so the eigenvalues are either:

complex congugates, A = o+ 01, A = a — B, and the fixed point is stable:

nearby trajectories rotate: rotational-transform on axis, tan+ = 3/a.

real reciprocals, A\, > 1 and A; = 1/)\,, and the fixed point is unstable
nearby trajectories diverge: A]! — oo as n — oo, AL — 0 as n — oo;

v, indicates unstable direction, v indicates stable direction.




The stable/unstable direction forwards in ¢ is the
unstable/stable  direction backwards in ¢.

1. x € “stable manifold ” if M"(x) — xg as n — +00.

all magnetic fieldlines with “starting point” x = xg + d vs,
where d € [e)s, €], and follow backwards in ¢.

separatrix

2. x € “unstable manifold” if M"(x) — x¢ as n — —o0.

all magnetic fieldlines with “starting point” x = xg + d v,
where d € [e/A\y, €], and follow forwards in ¢.

3. For the integrable case, the unstable manifold
leads into the stable manifold, and there is a
“clean” separatrix. L NN

t= 00000U



For perturbed magnetic fields, the separatrix splits.
A “partial” separatrix can be constructed.

1. “Homoclinic” points, x; = intersection of stable, unstable manifolds,
M"(xp) — xp as n — £ .

2. To locate xp, find (dy,ds),
MF (xo + dy V) = M7 (%0 + ds ),

if x;, is homoclinic,

so is MF(xy,), Vk.

3. Partial separatrix
= “smooth” part of unstable manifold
+ “smooth” part of stable manifold.




Anisotropic heat transport + unstable manifold = ?
What is the temperature in the “chaotic edge” ?




Anisotropic heat transport + unstable manifold = ?
What is the temperature in the “chaotic edge” ?




